|
Mechanised agriculture is the process of using agricultural machinery to mechanise the work of agriculture, greatly increasing farm worker productivity. In modern times, powered machinery has replaced many jobs formerly carried out by manual labour or by working animals such as oxen, horses and mules. The history of agriculture contains many examples of tool use, such as the plough. Mechanization involves the use of an intermediate device between the power source and the work. This intermediate device usually transforms motion, such as rotary to linear, or provides some sort of mechanical advantage, such as speed increase or decrease or leverage. Current mechanised agriculture includes the use of tractors, trucks, combine harvesters, airplanes (crop dusters), helicopters, and other vehicles. Modern farms even sometimes use computers in conjunction with satellite imagery and GPS guidance to increase yields. :See: List of agricultural machinery Mechanisation was one of the factors responsible for urbanization and industrial economies. Besides improving production efficiency, mechanisation encourages large scale production and improves the quality of farm produce. On the other hand, it displaces unskilled farm labor, causes environmental pollution, deforestation and erosion. ==History== (詳細はJethro Tull's seed drill (ca. 1701) was a mechanical seed spacing and depth placing device that increased crop yields and saved seed. It was an important factor in the British Agricultural Revolution. Since the beginning of agriculture threshing was done by hand with a flail, requiring a great deal of labor. The threshing machine, which was invented in 1794 but not widely used for several more decades, simplified the operation and allowed the use of animal power. Before the invention of the grain cradle (ca. 1790) an able bodied laborer could reap about one quarter acre of wheat in a day using a sickle. It was estimated that for each of Cyrus McCormick's horse pulled reapers (ca. 1830s) freed up five men for military service in the U.S. Civil War. Later innovations included raking and binding machines. By 1890 two men and two horses could cut, rake and bind 20 acres of wheat per day. In the 1880s the reaper and threshing machine were combined into the combine harvester. These machines required large teams of horses or mules to pull. Steam power was applied to threshing machines in the late 19th century. There were steam engines that moved around on wheels under their own power for supplying temporary power to stationary threshing machines. These were called ''road engines,'' and Henry Ford seeing one as a boy was inspired to build an automobile. With internal combustion came the first modern tractors in the early 1900s, becoming more popular after the Fordson tractor (ca. 1917). At first reapers and combine harvesters were pulled by tractors, but in the 1930s self powered combines were developed. (''Link to a chapter on agricultural mechanisation in the 20th Century at reference'') Advertising for motorized equipment in farm journals during this era did its best to compete against horse-drawn methods with economic arguments, extolling common themes such as that a tractor "eats only when it works", that one tractor could replace many horses, and that mechanisation could allow one man to get more work done per day than he ever had before. The horse population in the U.S. began to decline in the 1920s after the conversion of agriculture and transportation to internal combustion. Peak tractor sales in the U.S. were around 1950. In addition to saving labor, this freed up much land previously used for supporting draft animals. The greatest period of growth in agricultural productivity in the U.S. was from the 1940s to the 1970s, during which time agriculture was benefiting from internal combustion powered tractors and combine harvesters, chemical fertilizers and the green revolution.〔Fig 13.〕 Although farmers of corn, wheat, soy, and other commodity crops had replaced most of their workers with harvesting machines and combines enabling them to efficiently cut and gather grains, growers of produce continued to rely on human pickers to avoid the bruising of the product in order to maintain the blemish-free appearance demanded of consumers.〔(Wall Street Journal: "Robots Step Into New Planting, Harvesting Roles - Labor shortage spurs farmers to use robots for handling delicate tasks in the fresh-produce industry" By ILAN BRAT ) April 23, 2015〕 The continuous supply of illegal workers from Latin America that were willing to harvest the crops for low wages further suppressed the need for mechanization. As the number of illegal workers has continued to decline since reaching its peak in 2007 due to increased border patrols and an improving Mexican economy, the industry is increasing the use of mechanization.〔 Proponents argue that mechanization will boost productivity and help to maintain low food prices while farm worker advocates assert that it will eliminate jobs and will give an advantage to large growers who are able to afford the required equipment.〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「mechanised agriculture」の詳細全文を読む スポンサード リンク
|